Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 716: 137135, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059304

RESUMO

An integrated photo-bioelectrochemical system (IPB) for wastewater treatment combines a microbial fuel cell with an algal bioreactor, eliminating requirements for aeration, promoting electricity generation, remediating nutrients and producing algal biomass for conversion into biofuel or other bioproducts. To examine strategies for improving IPB functions of electrochemical output and nutrient removal efficiency, this study tested effects of cathode bacterial inoculation and nitrogen loading on cathode microbial community and IPB performance. IPB cathodes were inoculated with the green alga Chlorella vulgaris, in combination with nitrite-oxidizing bacteria (NOB) Nitrobacter winogradskyi, and/or ammonium-oxidizing bacteria (AOB) Nitrosomonas europaea. IPB performance was examined before and after nitrifying bacteria inoculations and under three ammonium loading concentrations in the wastewater medium. Bacterial communities in the cathode suspension and biofilm were examined by 16S rRNA gene sequence analysis. Relative to the algae only control, cathode inoculation with NOB and/or AOB improved net nutrient removal, but resulted in reduced dissolved oxygen availability, which impaired electricity generation. Higher ammonium loading increased electricity production and nutrient removal, possibly by overcoming algal-bacterial competition. Inoculation with nitrifying bacteria resulted in minor changes to total bacterial composition and AOB or NOB comprised <3% of total sequences after 1 month. Community composition changed more dramatically following increase in ammonium-N concentration from 40 to 80 mg L-1. Manipulation of N loading could be a useful strategy to improve IPB performance, while inoculation of AOB or NOB may be beneficial for treatment of water with high ammonium loading when N removal is the primary system goal.


Assuntos
Chlorella vulgaris , Amônia , Bactérias , Reatores Biológicos , Nitritos , Nitrogênio , Nitrosomonas , Oxirredução , RNA Ribossômico 16S
2.
Environ Sci Technol ; 52(9): 5358-5366, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29634901

RESUMO

Bioretention cells (BRCs) are effective tools for treating urban stormwater, but nitrogen removal by these systems is highly variable. Improvements in nitrogen removal are hampered by a lack of data directly quantifying the abundance or activity of denitrifying microorganisms in BRCs and how they are controlled by original BRC design characteristics. We analyzed denitrifiers in twenty-three BRCs of different designs across three mid-Atlantic states (MD, VA, and NC) by quantifying two bacterial denitrification genes ( nirK and nosZ) and potential enzymatic denitrification rates within the soil medium. Overall, we found that BRC design factors, rather than local environmental variables, had the greatest effects on variation in denitrifier abundance and activity. Specifically, denitrifying populations and denitrification potential increased with organic carbon and inorganic nitrogen concentrations in the soil media and decreased in BRCs planted with grass compared to other types of vegetation. Furthermore, the top layers of BRCs consistently contained greater concentrations and activity of denitrifying bacteria than bottom layers, despite longer periods of saturation and the presence of permanently saturated zones designed to promote denitrification at lower depths. These findings suggest that there is still considerable potential for design improvements when constructing BRCs that could increase denitrification and mitigate nitrogen export to receiving waters.


Assuntos
Desnitrificação , Microbiologia do Solo , Bactérias , Nitrogênio , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...